Perimeter and Area When Dimensions are Changed

A transformation of a figure in which all of the dimensions of the figure are multiplied by the same scale factor is called a dilation. If the scale factor is greater than 1, the new figure is larger than the original figure. This type of dilation is called an enlargement. If the scale factor is less than 1 , the new figure is smaller than the original figure. This type of dilation is called a reduction. Any dilation of a figure results in changes to the perimeter and area of the figure.

Effect of Dilation on Perimeter

Whenever a figure is dilated by a scale factor, the perimeter of the figure changes according to the same scale factor.

EXAMPLE 1

$\triangle A B C$ is reduced by a scale factor of $\frac{3}{4}$ to produce $\triangle D E F$. How does this dilation affect the perimeter of the triangle?

Perimeter of $\triangle A B C=8+12+12=32$
Perimeter of $\triangle D E F=6+9+9=24$

When $\triangle A B C$ is reduced by a scale factor of $\frac{3}{4}$, the perimeter of the triangle is also reduced by the same scale factor, because: $\frac{24}{32}=\frac{3}{4}$.

Quick Check 1

1a. A hexagon with a perimeter of 24 cm is enlarged by a factor of 1.75 . What is the perimeter of the new hexagon?

1b. A square with a perimeter of 14 in . is reduced to a square with a perimeter of 7 in . What is the scale factor of this reduction?

Effect of Dilation on Area

When a figure is dilated by a scale factor of $\frac{a}{b}$, the area of the figure is dilated by a scale factor of $\frac{a^{2}}{b^{2}}$.

EXAMPLE 2

Rectangle $A B C D$ is reduced by a scale factor of $\frac{1}{2}$ to produce rectangle $W X Y Z$. What is the area of rectangle $W X Y Z$?

Step 1 Find the area of rectangle $A B C D$. $6 \mathrm{ft} \times 8 \mathrm{ft}=48 \mathrm{ft}^{2}$
Step 2 Find the square of the scale factor.
$\left(\frac{1}{2}\right)^{2}=\frac{1}{4}$
Step 3 Multiply the area of rectangle $A B C D$ by the square of the scale factor to get the area of rectangle $W X Y Z$. $48 \mathrm{ft}^{2} \times \frac{1}{4}=12 \mathrm{ft}^{2}$
The area of rectangle $W X Y Z$ is $12 \mathrm{ft}^{2}$.

When a figure is dilated by a scale factor of $\frac{a}{b}$, it means that the two figures are similar and the ratio of the dimensions of the new figure to the dimensions of the original figure is $\frac{a}{b}$. The ratio of the perimeter of the new figure to the perimeter of the original figure is $\frac{a}{b}$. The ratio of the area of the new figure to the area of the original figure is $\frac{a^{2}}{b^{2}}$.

Quick Check 2

2a. A pentagon with an area of $8 \mathrm{~cm}^{2}$ is enlarged by a scale factor of $\frac{3}{2}$. What is the area of the new pentagon?
2b. A square with an area of 36 square inches is reduced to a square with an area of 9 square inches. What is the scale factor of this reduction?
\qquad Date \qquad

1 A circle has an area of 32 square inches. The circle is dilated by a scale factor of $\frac{1}{2}$ to produce a new circle. What is the area of the new circle?

A 4 square inches
B 8 square inches
C 16 square inches
D 64 square inches
$2 \triangle P Q T$ is similar to $\triangle P R S$.

Which best represents the ratio of the area of $\triangle P Q T$ to the area of $\triangle P R S$?

F $\frac{2}{3}$
G $\frac{2}{5}$
H $\frac{4}{9}$
J $\frac{4}{25}$

3 A company that makes square tiles would like to make a square tile that has 4 times the area of their smaller tiles. If their smaller tiles have a perimeter of 16 inches, what will be the perimeter of their larger tile?

A 8 in.
B 32 in.
C 64 in .
D 256 in.

4 A parallelogram is dilated by a scale factor of $\frac{1}{4}$ to produce a new parallelogram.
Which of the following best describes the relationship of the area of the new parallelogram to the area of the original parallelogram?

F The area of the new parallelogram is $\frac{1}{16}$ the area of the original parallelogram.
G The area of the new parallelogram is $\frac{1}{8}$ the area of the original parallelogram.
H The area of the new parallelogram is $\frac{1}{4}$ the area of the original parallelogram.
J The area of the new parallelogram is $\frac{1}{2}$ the area of the original parallelogram.

5 Rectangle $G H J K$ is a reduction of rectangle $L M N P$. If the area of rectangle $G H J K$ is 2 in. ${ }^{2}$, what is the area of rectangle $L M N P$?

A 5 in. ${ }^{2}$
B $10 \mathrm{in}^{2}$
C 25 in. 2
D $50 \mathrm{in}^{2}$

