#### **118** LESSON 40 • Perimeter and Area When Dimensions are Changed TAKS Review and Preparation Workbook

## Lesson 40 Perimeter and Area When Dimensions are Changed

A transformation of a figure in which all of the dimensions of the figure are multiplied by the same scale factor is called a **dilation**. If the scale factor is greater than 1, the new figure is larger than the original figure. This type of dilation is called an **enlargement**. If the scale factor is less than 1, the new figure is smaller than the original figure. This type of dilation is called a **reduction**. Any dilation of a figure results in changes to the perimeter and area of the figure.

### **Effect of Dilation on Perimeter**

Whenever a figure is dilated by a scale factor, the perimeter of the figure changes according to the same scale factor.

does this dilation affect the perimeter of the triangle?

 $\triangle ABC$  is reduced by a scale factor of  $\frac{3}{4}$  to produce  $\triangle DEF$ . How

12

#### EXAMPLE 1



12

Perimeter of  $\triangle DEF = 6 + 9 + 9 = 24$ 

When  $\triangle ABC$  is reduced by a scale factor of  $\frac{3}{4}$ , the perimeter of the triangle is also reduced by the same scale factor, because:  $\frac{24}{32} = \frac{3}{4}$ .

## Quick Check 1

- **1a.** A hexagon with a perimeter of 24 cm is enlarged by a factor of 1.75. What is the perimeter of the new hexagon?
- **1b.** A square with a perimeter of 14 in. is reduced to a square with a perimeter of 7 in. What is the scale factor of this reduction?

★ Vocabulary TIP When a figure is dilated, the lengths of the corresponding sides of the old figure and the new figure are in proportion. This proportion is called the scale factor.

# New Vocabulary

- dilation
- enlargement
- reduction
- scale factor

TAKS Grade 9 Objective 8 (8.10)(A)



#### TAKS Objective 8 (8.10)(A) LESSON 40

| en a figure is d<br>ted by a scale | lilated by a scale factor of $\frac{a}{b}$ , the area of the figure is factor of $\frac{a^2}{b^2}$ .                                                                                                                                              | * (AKS TIP                                                                                                                                                |
|------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| rectangle V                        | ABCD is reduced by a scale factor of $\frac{1}{2}$ to produce<br>VXYZ. What is the area of rectangle WXYZ?<br>8 ft<br>K<br>C $Z$ $Y$                                                                                                              | When a figure isdilated by a scalefactor of $\frac{a}{b}$ , it meansthat the two figuresare similar and theratio of thedimensions of thenew figure to the |
| Step 1                             | Find the area of rectangle <i>ABCD</i> .<br>6 ft $\times$ 8 ft = 48 ft <sup>2</sup>                                                                                                                                                               | dimensions of the<br>original figure is $\frac{a}{b}$ . T<br>ratio of the perimete                                                                        |
| Step 2                             | Find the square of the scale factor.<br>$(\frac{1}{2})^2 = \frac{1}{4}$                                                                                                                                                                           | of the new figure to<br>the perimeter of the                                                                                                              |
| Step 3                             | Multiply the area of rectangle <i>ABCD</i> by the square of<br>the scale factor to get the area of rectangle <i>WXYZ</i> .<br>$48 \text{ ft}^2 \times \frac{1}{4} = 12 \text{ ft}^2$<br>The area of rectangle <i>WXYZ</i> is 12 ft <sup>2</sup> . | original figure is $\frac{a}{b}$ .<br>The ratio of the area<br>of the new figure to<br>the area of the origi<br>figure is $\frac{a^2}{L^2}$ .             |

## Quick Check 2

Effect of Dilation on Area

- **2a.** A pentagon with an area of 8 cm<sup>2</sup> is enlarged by a scale factor of  $\frac{3}{2}$ . What is the area of the new pentagon?
- **2b.** A square with an area of 36 square inches is reduced to a square with an area of 9 square inches. What is the scale factor of this reduction?



- 1 A circle has an area of 32 square inches. The circle is dilated by a scale factor of  $\frac{1}{2}$  to produce a new circle. What is the area of the new circle?
  - **A** 4 square inches
  - **B** 8 square inches
  - **C** 16 square inches
  - **D** 64 square inches
- **2**  $\triangle PQT$  is similar to  $\triangle PRS$ .



Which best represents the ratio of the area of  $\triangle PQT$  to the area of  $\triangle PRS$ ?



- 3 A company that makes square tiles would like to make a square tile that has 4 times the area of their smaller tiles. If their smaller tiles have a perimeter of 16 inches, what will be the perimeter of their larger tile?
  - **A** 8 in.
  - **B** 32 in.
  - **C** 64 in.
  - **D** 256 in.

- 4 A parallelogram is dilated by a scale factor of <sup>1</sup>/<sub>4</sub> to produce a new parallelogram. Which of the following best describes the relationship of the area of the new parallelogram to the area of the original parallelogram?
  - **F** The area of the new parallelogram is  $\frac{1}{16}$  the area of the original parallelogram.
  - **G** The area of the new parallelogram is  $\frac{1}{8}$  the area of the original parallelogram.
  - **H** The area of the new parallelogram is  $\frac{1}{4}$  the area of the original parallelogram.
  - **J** The area of the new parallelogram is  $\frac{1}{2}$  the area of the original parallelogram.
- 5 Rectangle *GHJK* is a reduction of rectangle *LMNP*. If the area of rectangle *GHJK* is  $2 \text{ in.}^2$ , what is the area of rectangle *LMNP*?



- **A**  $5 \text{ in.}^2$ **B**  $10 \text{ in.}^2$
- **C** 25 in.<sup>2</sup>
- **D** 50 in.<sup>2</sup>